博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
互斥锁 僵尸进程与孤儿进程
阅读量:5162 次
发布时间:2019-06-13

本文共 5837 字,大约阅读时间需要 19 分钟。

一:僵尸进程与孤儿进程(面试会问到)

​ 主进程需要等待子进程结束后,主进程才结束,主进程时刻监测子进程的运行状态,当子进程结束之后,过一段时间将子进程回收

1.为什么主进程不在子进程结束后立马对其回收呢?

  1. 主进程与子进程是异步关系,主进程无法捕获子进程什么时候结束
  2. 如果子进程结束之后马上释放资源,主进程就无法监测子进程的状态(子进程立马死掉,不热乎了就没办法了)

2.unix 针对上面的内容提供了一个机制

所有子进程结束后,立马释放掉文件的操作链接,内存的大部分数据,但是会保留一个内容 :进程号、结束时间、运行状态

3.僵尸进程

所有的子进程结束之后,在被主进程回收之前,都会进入僵尸状态

4.僵尸进程有无危害

如果父进程不对子进程进行回收,产生大量的僵尸进程,这样就会占用内存,占用进程 pid 号

5.孤儿进程

父进程由于某种原因结束了,但是你的子进程还在运行中,这样你的子进程就成为了孤儿进程,但是如果你的父进程结束了,你的所有孤儿进程就会被 init 进程回收,对你进行回收

init 就是充当了生活中的孤儿院

6.僵尸进程如何解决(直接杀死父进程)

父进程产生大量子进程,但是不作为不回收,这样就会形成大量的僵尸进程,解决方式就是直接杀死父进程,将所有的僵尸进程变成孤儿进程,由 init 回收

二:互斥锁(保证数据安全,自己加锁容易死锁)

三个同事 同时用一个打印机打印内容.三个进程模拟三个同事, 输出平台模拟打印机.

版本一

存在的问题 : 现在是所有进程并发的抢占打印机,并发是以效率优先,并发是以效率优先的,但是我们现在是以顺序优先的,多个进程抢占一个资源时必须保证资源,要保证顺序优先,串行,一个一个来

from multiprocessing import Processimport timeimport osimport randomdef task1():    print(f"{os.getpid()}开始打印了")    time.sleep(random.randint(1,3))    print(f"{os.getpid()}打印结束了")def task2():    print(f"{os.getpid()}开始打印了")    time.sleep(random.randint(1, 3))    print(f"{os.getpid()}打印结束了")def task3():    print(f"{os.getpid()}开始打印了")    time.sleep(random.randint(1, 3))    print(f"{os.getpid()}打印结束了")if __name__ == '__main__':    p1 = Process(target = task1)    p2 = Process(target = task2)    p3 = Process(target = task3)    p1.start()    p2.start()    p3.start()"""8067开始打印了8068开始打印了8069开始打印了8068打印结束了8067打印结束了8069打印结束了一个字概括   乱"""

版本二 :

利用了 join 解决了串行问题,保证了顺序优先,但是这个谁先谁后是固定的,这样是不对的,你在争抢同一个资源时,顺序应该是不固定的……所以引出了下面的互斥锁

from multiprocessing import Processimport timeimport osimport randomdef task1():    print(f"{os.getpid()}开始打印了")    time.sleep(random.randint(1,3))    print(f"{os.getpid()}打印结束了")def task2():    print(f"{os.getpid()}开始打印了")    time.sleep(random.randint(1, 3))    print(f"{os.getpid()}打印结束了")def task3():    print(f"{os.getpid()}开始打印了")    time.sleep(random.randint(1, 3))    print(f"{os.getpid()}打印结束了")if __name__ == '__main__':    p1 = Process(target = task1)    p2 = Process(target = task2)    p3 = Process(target = task3)    p1.start()    p1.join()    p2.start()    p2.join()    p3.start()    p3.join()"""9026开始打印了9026打印结束了9031开始打印了9031打印结束了9038开始打印了9038打印结束了

lock 与 join 的区别:

共同点 :都可以将并发变成串行,保证了执行顺序

不同点: join 是人为设定顺序,lock 让其争抢顺序,保证了公平性

from multiprocessing import Processfrom multiprocessing import Lockimport timeimport osimport randomdef task1(p,lock):    lock.acquire()    print(f'{p}开始打印了')    time.sleep(random.randint(1,3))    print(f'{p}打印结束了')    lock.release()def task2(p,lock):    lock.acquire()    print(f'{p}开始打印了')    time.sleep(random.randint(1,3))    print(f'{p}打印结束了')    lock.release()def task3(p,lock):    lock.acquire()    print(f'{p}开始打印了')    time.sleep(random.randint(1,3))    print(f'{p}打印结束了')    lock.release()if __name__ == '__main__':    mutex = Lock()    p1 = Process(target = task1,args = ('p1',mutex))    p2 = Process(target = task1,args = ('p2',mutex))    p3 = Process(target = task1,args = ('p3',mutex))    p1.start()    p2.start()    p3.start()'''p1开始打印了p1打印结束了p2开始打印了p2打印结束了p3开始打印了p3打印结束了'''

三:进程之间的通信

1.基于文件通信(抢票系统)

主要是一个操作系统

  1. 先可以查票,查询余票数 并发
  2. 进行购买,向服务端发送请求,服务端接收请求,在后端将票数减一,返回到前端
  3. 补充一个知识点,json 中,字典所有的都是双引号

但是当多个进程共抢一个数据时,如果要保证数据的安全,必须要串行.

要想让购买环节进行串行,加锁

image-20190821140347311

下面进入加锁环节

from multiprocessing import Processfrom multiprocessing import Lockimport timeimport osimport randomimport jsondef search():    time.sleep(random.randint(1,3))    with open('ticket.json',mode = "r",encoding = "utf-8")as f1:        dic = json.load(f1)        print(f"{os.getpid()}查看了票数,剩余{dic['count']}")def paid():    with open('ticket.json', encoding="utf-8")as f1:        dic = json.load(f1)        if dic['count'] > 0:            dic['count'] -= 1            time.sleep(random.randint(1, 3))            with open('ticket.json', mode="w", encoding="utf-8")as f1:                json.dump(dic,f1)                print(f"{os.getpid()}购买成功")def task(lock):    search()    lock.acquire()    paid()    lock.release()if __name__ == '__main__':    mutex = Lock()    for i in range(6):        p = Process(target = task,args = (mutex,))        p.start()'''75543查看了票数,剩余175544查看了票数,剩余175548查看了票数,剩余175545查看了票数,剩余175543购买成功75546查看了票数,剩余075547查看了票数,剩余0''''

总结:当很多资源共抢一个资源数据时,你要保证顺序(数据的安全),一定要串行

互斥锁:可以公平性的保证顺序以及数据的安全

基于文件进程之间的通信 : 效率低,自己加锁麻烦,而且很容易出现死锁

2.基于队列通信

队列 : 把队列理解成一个容器,这个容器可以加载一些数据

  1. 共享的空间
  2. 内存空间
  3. 自动帮我们处理好锁定问题

Queue的特性 : 先进先出 FIFO

from multiprocessing import Queueq = Queue()def func():    print('in func')q.put(1)q.put("胖")q.put([1,2,3,4])q.put(func)print(q.get())print(q.get())print(q.get())print(q.get())'''1胖[1, 2, 3, 4]
'''
from multiprocessing import Queueq = Queue(3)q.put(1)q.put("alex")q.put([1,2,3])q.put(555)       #  当队列满了时,在进程 put 就会阻塞print(q.get())print(q.get())print(q.get())print(q.get())   # 当数据取完时,在进程get数据也会出现阻塞,直到某一个进程put数据.'''阻塞之后就直接不运行了,但是不报错'''

block

from multiprocessing import Queueq = Queue(3)q.put(1)q.put('alex')q.put([1,2,3])print(q.get())print(q.get())print(q.get())print(q.get(block = False ))'''只要遇到  block = False 阻塞就会报错'''

timeout

from multiprocessing import Queueq = Queue(3)q.put(1)q.put('alex')q.put([1,2,3])print(q.get())print(q.get())print(q.get())print(q.get(timeout = 3))'''阻塞 3 秒  3秒之后还阻塞就报错'''

队列存成数据间沟通的消息时,数据量不应该过大

maxsize 的值超过内存限制,将变得毫无意义

3.基于管道通信

生产者消费模型

from multiprocessing import Process,Queue

import time
import os
import random
def producer(q,name):
for i in range(1,6):
time.sleep(random.randint(1,2))
res = f"{i}号包子"
q.put(res)
print(f"生产者{name}生产了{res}")

def consumer(q,name):

while 1:
try:
food = q.get(timeout=3)
time.sleep(random.randint(1, 3))
print(f"消费者{name}吃了{food}")
except Exception:
return

if name == 'main':

q = Queue()
p1 = Process(target = producer,args=(q,'坤坤'))
p2 = Process(target = consumer,args=(q,'海狗'))
p1.start()
p2.start()
'''
生产者坤坤生产了1号包子
消费者海狗吃了1号包子
生产者坤坤生产了2号包子
生产者坤坤生产了3号包子
消费者海狗吃了2号包子
生产者坤坤生产了4号包子
消费者海狗吃了3号包子
生产者坤坤生产了5号包子
消费者海狗吃了4号包子
消费者海狗吃了5号包子
'''

转载于:https://www.cnblogs.com/hualibokeyuan/p/11392222.html

你可能感兴趣的文章
初学反编译-.-
查看>>
防御式编程
查看>>
单线程并发的server端
查看>>
View可以设置tag携带数据
查看>>
individual reading task ---12061183 叶露婷
查看>>
delphi的消息对话框
查看>>
java:Apache Shiro 权限管理
查看>>
38.输出1到最大的N位数[Print 1 to max number of N bits]
查看>>
ZOJ - 2165 Red and Black
查看>>
objective c的注释规范
查看>>
FreeNas安装配置使用
查看>>
机器学习中的F1-score
查看>>
编译安装php5.5.38
查看>>
常用查找数据结构及算法(Python实现)
查看>>
Scrapy框架-CrawlSpider
查看>>
Django(一)框架简介
查看>>
java.lang.OutOfMemoryError: Java heap space
查看>>
popular short sentences
查看>>
Python操作SQLite数据库的方法详解
查看>>
如何透彻的掌握一门机器学习算法
查看>>